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The Use of the Coordination Number in the 
Interpretation of Fluid Structure" 

P. G. MlKOlAJ t AND C. J. PINGS 
Division of Chemistry and Chemical Engineering 
Cdifornia Institute of Technology, Pasadena, California 

Use of radial distribution data, g(r) ,  to compute a coordination number, 
N ,  , for liquids is discussed for four methods: A, symmetrizing the first 
peak in rg(r) ; B, symmetrizing the first peak in rag(r) ; C ,  decomposition 
of r2g(r) into shells; and D, computation of area to the first minimum in 
r v ( r ) .  Experimental liquid structure data for argon a t  13 states were 
used to compute N ,  for each of the four methods. Theoretical computations 
were also made a t  low densities employing a cluster integral expansion 
of g(r) .  N ,  is a strong function of density, varying for method B from 
N ,  = 0 a t  Q = 0 to N ,  = 6 for Q 1: 2 e c  a t  temperatures near T c .  At 
Q N 2 ec values for N ,  for methods A, B, C ,  and D are 5.3, 6.0, 6.6, and 
7.6. 

INTRODUCTION 

A fundamental quantity in the description of the microscopic nature 
of liquids and dense gases is the radial distribution function (RDF), g(r). 
This function represents the relative probability of finding two atoms 
or molecules separated by the distance r ,  averaged over time and over 
all possible configurations of the remaining atoms in the fluid system. 
While this quantity arises in a natural way from the formal theory of 
classical statistical mechanics, it does not immediately suggest a de- 
fhite physical picture of the internal atomic structure, such as conveyed 
for solids by stipulating a type of crystal structure and unit cell di- 
mensions. 

* Work ~~pported by Directorate of Chemical Scienm of the U.S.Air Form 
office of Scientific Research under Contract No. AT 49(638)-1273 and by the Metal- 
lurgy Branch of the Office of Naval Resesrch under Contrect Nonr-220(40). 

t Present addreas: Department of Chemical Engineering, University of Cali- 
fornia, Santa Barbem, C8.lifornia. 
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94 P. G .  MIEOLAJ AND C. J. PINGS 

The study of liquid structure historically was an outgrowth of the 
study of solids, and many early attempts to  explain and characterize 
liquids inevitably used the tools of solid state analyais. Because of 
comparable densities and intermolecular separations, liquids could 
easily be visualized as a rather loosely joined lattice structure. A natural 
consequence was the assignment to the liquid of a series of coordination 
numbers in the same manner as to  a solid.Ganted that, because of the 
inherent mobility of the atoms within a liquid, this concept was somewhat 
nebulous, it nevertheless provided a convenient mental picture of the 
internal atomic arrangement. As a result of this long tradition, and also 
because of the somewhat abstract nature of the RDF, it has been custom- 
ary to compute and discuss coordination numbers when experimental 
or theoretical investigations and comparisons are made concerning the 
atomic structure of liquids and dense gases. 

Although the coordination number is a holdover from solid state 
theory, it has a certain degree of utility in addition to merely providing 
a physical picture of a liquid. By considering nearest-neighbor inter- 
actions, this concept is useful in making fist-order approximations to the 
macroscopic behavior of fluids, e.g., the process of fusion.'. The coordi- 
nation number has also been useful on a microscopic scale in estimating 
the non-additive contribution to the effective intermolecular pair poten- 
tial function of non-polar liquids.5 However, the application of this 
concept to liquids has also been a source of considerable confusion, 
notably in the case of argon. The early x-ray Mraction studies of 
argon' produced atomic distribution functions with a small sub-peak 
following the first coordination shell. On the basis of the structure of 
the solid, this sub-peak was identified as the second coordination shell 
in the liquid. This feature, long a subject of controversy,61s has since 
been shown to be spurious.7 

As a further complication, there exists no unique manner of computing 
the coordination numbers. Although these values are associated with 
the area under the peaks of the function 4nr2eg(r) (where e is the 
average number density), the inherent time and space average properties 
of g(r)  cause these peaks to overlap to such an extent that they can not 
be resolved with sufficient accuracy to give meaningful numbers. Except 
for peaks characteristic of intramolecular distance in polyatomic mole- 
cules, the only peak that can reasonably be- termed discrete is the one 
corresponding to the first shell. Consequently this h t  coordination 
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COORDINATION NUMBER IN THE INTERPRETATION O F  FLUID STRUCTURE 95 

number or number of nearest neighbors is the only one that is generally 
evaluated. For this reaaon we shall use the term coordination num'ber, 
hereafter referred to as N ,  , to mean only the first coordination number 
in the following discussion. 

It is the purpose of this paper to discuss and compare various methods 
presently used for computing N ,  with the hope of clarifying some of 
the confusion about this quantity and to  offer some mggestions for 
possibly standardizing the computations in future investigations of fluid 
structure. For this purpose we shall use our recently obtained RDF data 
on fluid argon a t  13 states in the general vicinity of the critical region.7 
In thk discussion we shall concentrate generally on the noble gases and 
primarily on argon. 

METHODS OF COMPUTING THE COORDINATION NUMBER 

A survey of the published investigations of liquid structure shows 
that there are four commonly used methods for arriving a t  N , .  For 
identification purposes, these methods will be labeled A, B, C, and D, 
and wil l  be discussed in order. Usually, although not always, these 
methods will result in progressively higher numerical values, i.e., (N,)* < 
< (Nl)B etc. These four methods are illustrated in Fig. 1, where the 
function 4 nr%eg(r) is plotted against r .  This curve is typical and rep- 
resents the distribution function of liquid argon slightly below the 
critical temperature and a t  a density about 50 per cent greater than 
ec .  For reference and comparison purposes, the location, rmaxr of the 
maximum of this function is shown. The leading edge of the second 
coordination shell (obtained by subtraction of the shaded portion from 
4 nrZeg(r) is also shown. 

METHOD, A - Symmetrical rg(g(7): 

This method involves symmetrizing the first peak in the function 
rg(r) about a radius of symmetry, r.4. N ,  is then determined from the 
integral 

r A - A r  ZrA 

~1 = J 4 n ~ r [ ~ ( r ) l s y r n  dr = J 4 n ~ r [ ~ ( r ) l s y m  dr (1) 
r.4 + Ar  0 

The interval A r is approximately rA - d where d is the atomic diameter. 
I* 
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96 P. Q. MTKOLAJ AND C. J. PINGS 

AS shown by the second equality in Eq. (l), the integration can be 
performed up to 2 rA since, ideally, g(r)  = 0 for 0 5 r < d ,  and con- 
sequently [ rg(r ) lsym = 0 for ( f a  + d )  < r 5 2 T A .  This method was 
advanced by Coulson and Rushbrooke2 when they showed that the 
quantity r g ( r )  is, for each coordination shell, symmetrical about its 
mean radius for any Einstein model of a liquid. This argument has also 
been presented in a more general manner by ViervolP and by Waser 
and Schomaker.@ Viervoll stresses the fact that it is r g ( r )  that is a sym- 
metric function and not g(r)  or rrag(r). Hence, he believes that inter- 
atomic distances and presumably N ,  should be based on this function. 
In  testing their theory on the early x-ray measurements of liquid 
sodium,1° Coulson and Rushbrooke were able to obtain excellent agree- 
ment with the experimental atomic density functions. However, their 
construction of symmetrical rg ( r )  peaks was based on the existence of 
a small subpeak lying between the fust and second coordination shells. 
This subsidiary peak was questioned,s and later experimentsll showed 
it to be spurious. When this spurious subpeak is subtracted from the 
original experimental curve, it becomes impossible to construct sym- 
metrical rg(r)  peaks that agree with the resultant experimental values. 

Although this method has some theoretical foundation, to our know- 
ledge the existence of symmetrical r g ( r )  peaks has not yet been experi- 
mentally verified.12 Since the rg ( r )  radius of symmetry is less than r,,, , 
this method will generally produce the smallest numerical value of I?, . 
Its primary advantage lies in the fact that it can be accurately computed 
because of the clearly defined leading edge of the first peak in the RDF. 

METHOD B - Symmetrical ?g(r): 

This method is one of the most common ones in use and is based on 
the assumption that the coordination shells are symmetric about a 
radius, call it r B ,  which defines the maximum in the function rzg(r). 
It is determined by evaluating the integral 

rmmX 

N ,  = q [ r 2 g ( r ) l s y l n  dr = 2 J 4 ne[r2g(r) ]  drsyn, (2) 
ra  - A r  0 

where d r  M f B  - d and rB = rmax. 
Similar to Method A, use is made of the fact that the leading edge of 

the first peak in rag(r)  is usually clearly defined. It likewise offers a 
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COORDINATION KUYBER IN THE INTERPRETATION OF FLUID STRUCTURE 97 

fairly precise way of determining N ,  , and, because of its unambiguity, 
is useful in comparing results among m e r e n t  investigators. 

Although this method has been long and widely used, it sutTers from 
the fact that the function r v ( r )  is not really symmetric about rB.  Th18 
fact is especially noticeable in measurements made on high-density 
liquids near their melting points. Under these conditions the first peak 
is quite pronounced compared to the average density of the liquid, and 
its asymmetry is clearly &ble. Generally speaking, the trailing edge 
of the h t  peak in r v ( r )  extends beyond the symmetrical value of 
r B  + Ar, and any reasonable extrapolation gives a value of N ,  which 
is significantly larger than the symmetric r2g(r) value. This condition 
is physically reasonable when the microscopic behavior of the fluid 
particles is considered. The maximum in r2g(r) is associated with the 
equilibrium or most probable intermolecular separation, corresponding 
to the minimum of the potential energy function. I n  departing from this 
equilibrium position, the particles are severely limited in their motion 
toward smaller radii by the large repulsive forces of the central molecule. 
Although nominally bounded by the second coordination shell, the 
nearest neighbor particles have a good deal more latitude or freedom 
for moving outward toward larger radii. Consequently, i t  is reasonable 
to expect, on the average, there would be a higher number of atomic 
centers atlargerradii, thus providing an asymmetric first coordination shell. 

METHOD C - Decomposition 01 4 nr2eg(r) into shells: 

The intuitive appeal of the argument just presented, plus the observed 
asymmetry of the first shell, naturally leads to  an attempted decom- 
position of the total distribution function into its component coordination 
shells. While this method is probably the most objective in concept, it 
is the least objective in arriving at  a precise value of N , .  The reason 
for this.is that the individual shells overlap to such an extent that there 
is no unique way of resolving them. Thus, the N ,  may easily vary by 
20 per cent depending upon how the separate coordination shells are 
constructed. In  some cases, notably for liquids near their melting point, 
the Grst peak is sufficiently well defined so that the extrapolation of its 
trailing edge presents no serious problems. However, for dense gases 
or moderately dense liquids, such as shown in Fig. 1, the decomposition 
of the total distribution function into its component shells is far from 
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98 P. Q. MIKOLAJ AND C. J. PINQS 

obvious. Thus, the evaluation of N ,  by this method becomes a matter 
of the philosophy of the individual investigator. We describe one such 
philosophy below. 

The concept of a first coordination number or number of nearest 
neighbors automatically impliea the existence of higher coordination 
shells. These shells represent the average number of atomic centers to 
be found a t  some distance f d r  from the mean radius of the shell. 
While nothing is said about the shapes of the coordination shells, the 
continual and random motion of the individual particles dictates that 

/ METHOD A 

r 

/ METHOD B 

Figure 1. Plot of 4+&) w. r showing the four methods for computing the coordi- 
nation number. 

they be represented by a function of 7 which is continuous and fairly 
smooth. This condition points up a deficiency of Methods A and B, a t  
least on a conceptual basis. As shown in Fig. 1, subtraction of the h t  
coordination shell from the total atomic distribution function will not in 
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COORDINAmON NUMBER IN THE INTERPRETATION OF FLUID STRUCTURE 99 

general yield a second shell with physically meaningful properties. 
However, even the imposed restriction that all these hypothetical 
wncentric shells be smoothly continuous is of little use unless some 
decision is made regarding their width or thickness. We use the word 
hypothetical because by the very nature of a fluid there is considerable 
interpenetration of particles between “shells” as well as migration 
into and out of these shells. The main problem then becomes one of 
rather arbitrary bookkeeping in which each particle of the fluid is to 
be identified with a particular coordination shell. 

Recognizing the inherent random and short-range nature of fluids, 
it becomes a matter of pure conjecture to discuss anything beyond the 
first and possibly the second coordination shell. The decomposition of 
the total atomic distribution function can thus be limited to elucidating 
the overlap region between the first and second shells. To accomplish 
this, we take the distance rmax, locating the maximum in 4 maeg(r), 
as being the mean radius of the Grst shell. We then adopt the philosophy 
that particles from the second shell can penetrate the f i s t  shell up to, and 
only up to, this distance. Any particles being a t  a distance less than rmax 
are counted as belonging to the b t  shell. Then, as shown in m. 1, a 
smooth extrapolation of the leading edge of the second shell followed 
by subhaction gives the outward portion of the first shell. Thus, the 
first shell decays to zero at r = r c ,  and the second shell begins rising 
from zero at r = rmm. 

This method of treating the overlap region, while not necessarily 
giving a unique value of Nl , offers several advantages over other meth- 
ods. Since the weak point of any decomposition-type method is the 
extrapolation, the most advantageous choice is obviously the one which 
permits the most objective extrapolation to be made. In nearly all 
instances, the leading edge of the second shell is more clearly defined 
than the tra- edge of the h t  shell. This fact, coupled with a clearly 
defined limit point makes the required extrapolation rather straight 
forward. While this overlap concept could be reversed, i.e., allowing the 
first neighbor particles to  penetrate out to the mean radius of the 
second shell, the maximum of the second shell quite often appears only 
aa an inflection point and its location can not be adequately defined. 
Thus, the decomposition method described here seems to offer a means 
of computing, with minimum ambiguity, a conceptually more appealing 
value of N,. 
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100 Y. G .  M l g O L A J  AND C. J. PINGS 

METHOD D - Integration to the first minimum in 4nrzqg(r) : 

While the origin of this method is not known, it appears to offer a 
compromise between a more realistic definition of N ,  than Methods A 
or B, and a more objective means of computation than Method C. As 
shown in Fig. 1, N ,  is determined by evaluating the integral 4 d e g ( r )  
out to a distance, say f D ,  corresponding to the first minimum on the 
high r side of the first peak. By so defining N ,  , recognition is made of 
the fact that the nearest neighbor particles are more likely to stray 
outward from their equilibrium position than inward toward the central 
or reference particle. The advantage of this method is that, presumably, 
the characteristic distance r D  may be precisely determined, thereby 
giving an unambiguous value of Nl . 

Method D will always result in a higher estimation of N ,  than either 
A or B. A comparison with Method C depends entirely upon how an 
isolated first peak is constructed ; however, following the previously 
described treatment, Method D will generally produce a higher numerical 
value. The problem again becomes one of deciding which is the more 
realistic. I n  support of Method D, Kaplow, Strong, and Averbach13 
show that the resulting coordination number for certain liquid metal 
systems a t  their melting point is in very good agreement with the number 
of near neighbors in the solid. The same result was observed for liquid 
argon near the triple point by Gingrich and Tompson.l* However, 
on the basis of our belief that there is a complete discontinuity be- 
tween liquids and solids, we can not accept these fortuitous results 
as strong evidence for the acceptability of this method for com- 
puting N , .  

While this method has both a certain appeal and convenience, it also 
has some drawbacks. I ts  usefulness is predicated on the assumption that  
the characteristic radius, r D ,  can be uniquely determined. For most 
dense liquids this is true. However, for moderately dense gases and for 
metals sufficiently removed from their melting point, the first minimum 
in 4 nr2eg(r) is quite broad and r D  is difficult to precisely locate. In  
addition, experimental g(r)  curves are usually plagued with spurious 
ripples arising from experimental errors in intensity measurements and 
from the subsequent Fourier analysis. These spurious features are quite 
often very pronounced in the general area of this first minimum, 
i.e., in the vicinity of f D .  These error ripples not only cmplicate the 
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COORDINATION NUMBER IN THE INTERPRETATION O F  FLUID STRUCTURE 101 

problem of choosing the appropriate r D ,  but also produce an uncer- 
tainty in Nl because the exact or true behavior of g(r) in this region 
can not be ascertained. 

EXPERIMENTAL COORDINATION KUMBERS FOR ARGON 

To illustrate the diversity of these various methods in estimating the 
coordination number, we have performed the indicated computations 
using our recently obtained RDF data on argon.' Table I lists the experi- 
mental values of N ,  for each of 13 states as determined by the four 
previously described methods. Included in this table is our estimate of 
the uncertainty in N , ,  arising as a result of uncertainties in g(r) .  In 
Table I1 are listed values of the characteristic radii which were used in 
arriving a t  the experimental coordination numbers. Except for rc , these 
radii have been partially smoothed by a linear correlation of the experi- 
mental values against the argon density and temperature. 

Examination of the results in Table I shows that for each of the four 
methods there is a definite and systematic variation of N ,  with density. 
On the other hand, there is no obvious effect of temperature, a t  least 
over the somewhat small temperature range of our experiment. This 
variation of N ,  with thermodynamic state is shown in Fig. 2, using the 
results obtained for Method B as an example. The individual symbols in 
trhis figure represent the experimental values as given in Table 1. The 
results for the other three methods are similar. 

This observed variation of N ,  is not entirely unexpected. From classical 
statistical mechanics with tha usual assumptions of spherical symmetry 
and additive pair potentials, the RDF can be expanded in a virial series 
of the density with coefficients related to the Mayer cluster integrals. 
The resulting equation takes the formlS 

g(r ;  e ,  T) = go(r ;  T) [I + es l (r ;  T) + 0 (el2] (3) 

where the temperature dependent coefficients go and g, are also func- 
tions of the effective intermolecular pair potential function, u(r). 

(4 )  go(' ; T) = exp { --u(r)/kT) 

Again using Method B as an example, substitution of Eq. (3) into Eq. (2) 
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102 P. G .  MIEOLAJ AND C. J. PINGS 

TABLE I Experimental first coordination numbers for argon 

22 - 
23 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

-130 
-130 
-125 
-125 
-125 
-120 
-120 
-110 
-110 
-115 
-110 
-120 
-125 

0.910 
0.982 
0.910 
0.780 
0.280 
0.780 
0.536 
0.536 
0.280 
0.536 
0.780 
0.910 
0.982 

4.6 f .1 
4.9 f .1 
5.0 f .1 
4.4 f .1 
1.7 f .1 
4.6 f .2 
3.3 f .1 
3.2 f .1 
1.8 f .1 
3.4 f .2 
4.7 f .1 
5.2 f .1 
5.6 f .1 

5.4 f .1 6.2 f .2 6.9 f .1 
5.8 & .1 6.5 f .4 7.3 f .2 
5.6 f .1 6.0 f .3 6.8 f .2 
4.9 f .1 5.5 f .2 6.0 f .1 
1.8 f .1 2.2 f .2 2.3 & .1 
5.1 f .3 5.6 f .5 6.1 f .3 
3.6 f. .1 4.1 f .4 4.3 f .2 
3.6 f .1 4.1 f .4 4.2 f .2 

3.7 f .2 4.1 f .4 4.2 f .2 
5.2 f .2 5.6 & .4 6.0 f .2 
5.8 f .1 6.3 f .4 7.0 f .2 
6.2 f .1 6.7 f .2 7.5 f .1 

2.0 f .1 2.2 f .2 2.2 f .1 

TABLE 11 
characteristic radii used in determiDing experimental coordination numbers 

Run ~ A ( A ) '  rg(8) '  ~ c ( 8 ) '  r ~ ( 8 ) ~  

22 3.86 3.96 6.0 4.92 
23 3.85 3.95 6.2 4.92 
30 3.87 3.97 5.8 4.92 
31 3.88 3.98 6.1 4.91 
32 3.90 4.00 6.1 4.87 
33 3.90 4.00 6.1 4.91 
34 3.91 4.00 6.1 4.89 
35 3.94 4.04 6.3 4.88 
36 3.95 4.05 6.4 4.86 
37 3.92 4.02 6.1 4.89 
38 3.93 4.03 6.1 4.90 
39 3.89 3.99 6.0 4.91 
40 3.87 3.97 6.0 4.92 

r A  is the location of the maximum in rg(r) 
' YB is the location of the maximum in r2g(r) 

rc locates the high Y limit of the isolated first shell in Method C 
9-D is the location of the f i s t  minimum in +g(r) 
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h 
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I- 
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D 
(r: 
0 
0 
V 

- 1  ' I ' I ' I 
ARGON 

M E T H O D  B 

- EQ.(6) EXPERIMENTAL __- -  EQ.(6) L - J 6, 12 

0 t =-130Oc 

0 t =-120oc 
v t . -1150C 

- 
t = - I 2 5 ' C  

A t - I  I Oo C 

- 

0.2 0.4 0.6 0.0 I .o 
DENSITY (gm/cc) 

Figure 2. The effect of density on the first ooordination number of argon aa deter- 
mined by Method B. The symbols show the experimental values and the solid curve 
represents a second-order virid expension fitted to the data points. The dashed 
o w e s  represent a theoretical model using a Lemrd-Jones 6-12 potential function. 
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104 P. a. MIKOLAJ AND C. J. PINGS 

gives a corresponding density expansion for the first coordination number 

N1= e + rAT) e2 + O(e? (6) 
with the coefficients given by the equations 

rn 

l; I1(~) = 8 J T2g0(r; T) ar (7) 
0 

where r B  is the location of the first maximum of the function r2g(r). 
Following the form of Eq. (6), the experimental data were fitted by 

least squares to a second degree polynomial in density. Since there was 
no observable temperature variation of the data, q1 and q2 were assumed 
to be constants. The resulting correlation for Method B is shown as the 
solid curve in Fig. 2. In Table III are listed numerical values of the 

TABLE I11 Coefficients in the virial expansion of the first coordination number 

Method 

Vl* 
Experimental vZ** 
Theoretical ql 

MSD 

L - J  6-12 qz 
t =  -110'C MSD 
Theoretical q1 
L - J  6-12 7 2  

t =  -125OC MSD 

A 

7.07 
-1.73 

0.22 
5.37 

-0.91 
0.02 
5.69 

-0.74 
0.02 

B C D 

7.54 8.59 8.28 

0.17 0.14 0.10 
6.53 8.99 7.11 

0.01 0.01 0.03 
7.20 9.21 8.08 

0.03 0.04 0.03 

-1.46 -1.92 -0.74 

-1.36 -1.82 0.76 

-1.46 -1.17 1.00 

* 
** 
t 

ql in units of atoms - (gm/cc)-l 
rle in units of atom - (gm/cc)-2 
MSD is the mean square deviation in atoms 

coefficients for each method as well as the mean square deviation (MSD) 
in atoms. Values of the MSD show that the data are well represented 
by a second degree polynomial. A third degree function was also tried, 
but gave essentially no improvement in the fit. 

The virial expansion as given by Eq. (6) may be used to gain further 
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insight into the behavior of the first coordination number. The tempe- 
rature coefficients 7 are related to  the effective manybody interactions 
within the fluid. Truncation of this series after the e 2  term is tantamount 
to neglecting all but the two and three particle interactions. While 
this condition is reasonable a t  low densities, it is certainly not realistic 
a t  higher densities. Nevertheless, this approximation should provide 
some indication as to the effect of temperature on N l .  Following this 
reasoning we have evaluated the three particle interaction integral of 
Eq. (5) and have computed “theoretical ” coordination numbers. These 
computations were made with a Lennard-Jones 6-12 potential function 
for argon using parameters ~ l k  = 1193°K and c = 3.405 A. Two iso- 
therms were studied, - 110°C and - 125”C, and coordination numbers 
were evaluated a t  the five densities studied in the experimental work.16 
These theoretical results were correlated by least squares techniques 
according to Eq. (6), and the resulting values of q1 (T) and q2 (T) are listed 
in Table 111. Using Method B again as an illustration, the theoretical 
coordination numbers for a L-J 6-12 potential are plotted in Fig. 2 
as the dashed curves. 

In  view of the severe limitations of the theoretical models, there is 
surprising agreement between the experimental values and those 
predicted from Eq. (6) with a L - J  potential function. Also in agreement 
with the experimental results is the rather small temperature effect. 
The other three methods showed a similar behavior, with the theoretical 
coordination numbers varying by about 10 per cent over the indicated 
temperature range. For methods A and B, the theoretical coordination 
numbers were slightly lower than the experimental values while for 
Methods C and D they were slightly higher. 

A summary of our experimental results is shown in Fig. 3, where 
correlated values of the experimental first coordination number are 
plotted against the sample density for each of the four methods. We 
also show in this figure the results obtained from previous investigations 
of liquid argon and indicate the method used in arriving a t  these values. 
Both the neutron work of Henshawl? and the x-ray work of Gingrich 
and Tompsonl4 were done near the triple point (-189.4”C and e = 
1.41 gmlcc). The other values of Eisenstein and Gingrich4 correspond 
to measurements made along the vapor-liquid coexistence curve. These 
points are displaced slightly on the graph in order to distinguish among 
them. 
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0 GlNGRlCH & TOMPSON (14) 

0.4 0.8 I .2 I .6 
DENSITY (gm/cc) 

Figure 3. Summary of the experimental first coordination number of argon. The 
solid curves labelled A, B, C, and D represent the correlated experimental results of 
this work. The symbols correspond to the previous measurements of other investi- 
gatom and are also identified according to the method used in the computation of Nl. 

DISCUSSION 
From the results presented here, several statements may be made 

regarding the applicability of the coordination number as a means of 
interpreting fluid structure. In the Grst place, it is clear that the speci- 
fication of a liquid state coordination number is meaningless unless the 
method by which it has been evaluated is clearly stated. While this 
statement might seem to be obvious, it is also apparent that this basic 
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COORDDYATION NUMBER IN THE INTERPRETATION OF FLUID STRUCTURE 107 

fact is quite often overlooked. In  a recent surveyl8 of the existing RDF 
data for liquid mercury near room temperature, the first coordination 
number, as reported by fourteen Werent investigators, varied from 
about 6 to 12. Out of all these separate studies, which covered the period 
from 1930 to 1964, only one investigator specilkally defined the method 
by which the coordination number had been determined. 

Secondly, unlike crystalline solids, the coordination number of a 
liquid is not constant but vanes markedly with thermodynamic state. 
For noble gases below the critical temperature, Nl wil l  vary from about 
3.7 & 0.5 at  the critical point to about 10 f 2 at the triple point, 
depending on the method used; for the more general fluid or dense gas 
state, it will vary from zero at  zero density to a value possibly larger 
than that of the solid at extremely high pressures. The predominant 
factor in determining the variation of the coordination number appears 
to be the density, with temperature having a smaller effect. This behavior 
is plausible on the physical basis that an increase in temperature tends 
to impart a higher degree of mobility to the fluid particles, thereby 
broadening, and perhaps shifting, the first peak in g(r) .  While the 
probability of locating the exact position of each particle is reduced, 
a restriction of constant density fixes the effective or average volume 
of each particle. Thus, an integration over the volume which is available 
to the first shell should result in a relatively constant number of nearest 
neighbors. This is in agreement with a recent study by Melrose,ls who 
estimated that the coordination number varied by only 15 per cent over 
a reduced temperature range of 1 .O to 1.5. 

One of the major causes for the nebulosity associated with the coordi- 
nation number seems to be the uncertainty as to which method gives 
the “best” or most realistic value. It is our opinion that this question 
is irrelevant and that too much emphasis has been placed on giving a 
literal interpretation to this quantity. For reasons discussed earlier, the 
concept of a coordination number suffers a drastic loss in the translation 
from solid state language to that of the liquid state. Nevertheless, it 
is also apparent that this quantity offers a means of summarizing some 
of the characteristics of the structure of a fluid. For example, in describ- 
ing the vaporization of argon at  - 125’C, it is convenient to state that 
the coordination number changes from about 5 atoms in the saturated 
liquid to about 2 atoms in the saturated vapor. While this piece of 
information does not replace a detailed description of the corresponding 
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108 P. G .  M I K O L N  AND C. J. PINGS 

changes in the RDF, it is helpful in visualizing the structural changes 
which take place. In  view of the hypothetical nature of the coordination 
number when applied to liquids, it seems questionable whether a change 
from 6.0 to 2.3 atoms according to Method D conveys any more or any less 
information than a change from 4.9 to 1.8 atoms according to Method B. 

We would like to suggest that the coordination number is a useful 
structural parameter, but is essentially devoid of any absolute meaning. 
While it might be helpful to coin a new name for this parameter in 
order to avoid ambiguity, it appears that the term “coordination 
number” is too deeply entrenched in the history of fluid state theory. 
The question of which method should be used to compute this quantity 
obviously has no rigorous answer. Therefore, we again stress the fact 
that any computation of a liquid state coordination number should be 
accompanied by a clearly defined explanation of the method used. 
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